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Exposure to ethanol (ETOH) during fetal development results in a range of 

cognitive/behavioral deficits.  There are differences in sensitivity to the effects of 

ETOH that could be explained by other factors, such as hypoxia.  Similar 

mechanisms of damage underlie both ETOH, more specifically ETOH 

withdrawal, and hypoxia.  Based on this overlap, it was hypothesized that sub 

threshold levels of these insults may interact to produce increased damage in 

sensitive brain regions.   This study used a rodent organotypic hippocampal slice 

culture model to investigate the interaction of hypoxia and ETOH withdrawal and 

to determine possible developmental differences in the sensitivity to these 

insults.  The combination of ETOH and hypoxia produced greater damage in the 

CA1 and CA3 hippocampal regions, as measured by propidium iodide uptake.  

Differences in outcome were noted between on postnatal (PND) 2 and PND 8 

tissue.  ETOH alone caused damage as measured by the neuronal marker 

NeuN, suggesting the ETOH/hypoxia interaction involves different cell types and 

that caution should be taken when determining appropriate levels of exposure.  

This data could explain why some offspring appear more sensitive to ETOH 

and/or hypoxic challenges during early life.       

KEYWORDS: Fetal ethanol, Ethanol withdrawal, Hypoxia, Oxygen Glucose 

Deprivation, Hippocampal slice culture 
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Chapter 1: Introduction 

In this thesis, I examined the hypothesis that fetal alcohol exposure and 

perinatal hypoxia interact to produce synergistic brain damage. I first provide 

background on fetal alcohol exposure and hypoxia and how these insults 

produce a range of deficits in the developing central nervous system. This will be 

followed by a review of the mechanisms through which these two challenges may 

interact and finally data investigating this possible interaction will be presented. 

The interaction of fetal alcohol exposure and hypoxia is of particular interest 

because it may help to explain some of the variability in outcome that is observed 

in clinical populations. 

Fetal Alcohol Spectrum Disorders 

Background 

             For centuries, it has been known that alcohol consumption during 

pregnancy can lead to developmental anomalies in children although a specific 

syndrome associated with prenatal alcohol exposure was not described until 

1968 in France (Lemoine, Harousseau, Borteyru, & Menuet, 2003)(1968). This 

was independently documented in the United States in 1973 (Jones & Smith, 

1973) when doctors recognized a pattern of specific abnormalities in the children 

of alcoholic mothers which became known as Fetal Alcohol Syndrome (FAS).  

While FAS is one of the most severe diagnoses resulting from alcohol exposure 

during fetal development, there are a range of disorders that fall under the term 

Fetal Alcohol Spectrum Disorders (FASDs).  Recent estimates taken in the 
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United States and Western Europe suggest that FASDs may affect up to 2-5% of 

children  (May et al., 2009) and with this high prevalence rate, it is not surprising 

that the annual cost of FASDs in the US may be as high as $3.6 billion (Olson, 

et. al., 2009).  Maternal drinking during pregnancy is the leading preventable 

cause of mental retardation in the western world and despite preventative efforts 

and knowledge of its effects, alcohol consumption during pregnancy remains 

unacceptably high. 

Fetal Alcohol Exposure 

Alcohol consumption during pregnancy is dangerous because alcohol 

readily crosses the placental barrier and within minutes of the onset of a drinking 

episode, the fetal alcohol content is equal to that of the maternal blood (Paintner, 

Williams, & Burd, 2012). Adding to this, the fluid of the fetal compartment retains 

a peak alcohol concentration for a longer period of time due to the inability of the 

fetus to metabolize the alcohol, resulting in a prolonged exposure period 

(Paintner et al., 2012).  While the exact amount, timing, and pattern of alcohol 

consumption necessary to cause damage to the fetus is unknown, there is 

evidence that certain patterns may be more harmful than others and that 

exposure at different time points during development could differentially affect 

certain regions of the brain and other organ systems.   

Binge drinking, a pattern of consumption often observed in alcoholics, can 

be especially damaging.  Binge drinking leads to greater elevations in blood 

alcohol content and extended exposure periods for a developing fetus. This 
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pattern is also associated with multiple alcohol withdrawals, which is linked to 

increased deficits (Livy, Miller, Maier, & West, 2003).  Even if a mother only 

drinks heavily on the weekends, the cumulative exposure time for the fetus could 

be as much as 2,200 hours with peak concentrations approaching .40 percent 

(Paintner et al., 2012).  The total amount of alcohol consumed may not be as 

important, in terms of overall detrimental effects, as the pattern drinking.   

The body’s organs, including the brain, are probably the most susceptible 

to the teratogenic effects of alcohol during their development.  The central 

nervous system (CNS) continues to develop throughout prenatal and early 

postnatal life (Rodier, 1994), leaving it especially sensitive to fetal alcohol 

exposure. The third trimester of pregnancy is a time of rapid CNS proliferation 

often referred to as the brain growth spurt.  Alcohol exposure during this time can 

be especially detrimental, affecting neuronal migration, synaptogenesis, 

mylenation, dendritic aborization and other aspects of brain maturation.  Regions 

of the brain that undergo extensive development during this time, e.g., 

cerebellum and hippocampus, have been shown to be selectively damaged by 

exposure during the third trimester (Alfonso-Loeches & Guerri, 2011), 

highlighting the importance of exposure and timing.   

Clinical Outcomes 

Historically, children with FAS were identified by discriminating facial 

features that include small palpebral fissures, flat midface, indistinct philtrum, and 

thin upper lip.  Other associated features include ear anomalies, low nasal 
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bridge, micrognathia, and epicanthal folds (Stokowski, 2004).  Beyond the classic 

facial features, children with FAS have prenatal and postnatal growth deficiencies 

and some range of CNS dysfunction (Mattson & Riley, 1998; Mattson, Riley, 

Gramling, Delis, & Jones, 1998; Riley, Infante, & Warren, 2011). Individuals 

without the full FAS diagnosis, those with a FASD, can display a range of 

neurobehavioral deficits while lacking the classic physical characteristics of FAS.  

These neurological impairments include; lowered IQ, problems with executive 

function, motor coordination, spatial learning, attention, and hyperactivity (Jones, 

2011; Mattson & Riley, 1998).  The majority of children with a FASD have below 

average overall intelligence and the most severe cases of fetal alcohol exposure 

can result in mental retardation (Mattson et al., 2010). Beyond IQ, 

neurobehavioral assessments that measure abilities such as executive 

functioning and spatial reasoning are able to identify alcohol exposed children 

versus non-alcohol exposed children with exposed children demonstrating 

impaired working memory, planning, and cognitive flexibility compared to 

matched controls (Mattson et al., 2010).  Fetal alcohol exposure often leads to 

attention and hyperactivity problems and it is possible that up to 94% of children 

exposed to large doses of alcohol are diagnosed with attention deficit 

hyperactivity disorders (Peadon & Elliott, 2010). FASD children may also have 

impaired social functioning and, with reduced social abilities, they can experience 

problems at home, in school, and various other settings; leaving them at 

increased risk to act inappropriately and experience rejection (Kully-Martens, 

Denys, Treit, Tamana, & Rasmussen, 2012). The cognitive, behavioral, and 
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social consequences associated with FASDs are life-long (Streissguth et al., 

2004) and present a significant problem for the individual and society.     

Changes in the Brain 

The cognitive and behavioral deficits observed in individuals with a FASD 

can be linked to several brain structure abnormalities.  Through the use of MRI, it 

is possible to observe structural changes in the brains of children exposed to 

alcohol (ethanol (ETOH)) in utero and several areas appear to be particularly 

affected.  In children with FAS, the size of the corpus callosum can be 

decreased, and in extreme cases, there can be a complete agenesis of this 

(Riley & McGee, 2005). Size reduction has also been observed in the basal 

ganglia (Mattson et al., 1994), cerebellum, and cerebrum (Archibald et al., 2001).  

Understanding of the brain dysmorphology and the behavioral deficits induced by 

fetal ETOH exposure has been improved through the use of animal models.   

Results from both human and animal studies suggest that normal 

myelination is impaired by ETOH.  Following high levels of ETOH exposure, 

white matter injury is observed (Fryer et al., 2009; Sowell et al., 2008) but not 

with lower levels (Kenna et al., 2011). Using diffusion tensor imaging (DTI), 

several studies show decreases in white matter in areas such as the cerebellum, 

cerebellar peduncles (Spottiswoode et al., 2011) posterior cingulate, temporal 

lobe, and areas of the frontal, occipital, and parietal lobes (Fryer et al., 2009). 

Decreases in myelination lead to impaired neuronal signaling and given the 
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number of regions affected by this, it is not surprising that children with a FASD 

can have a display a range of CNS dysfunction.  

           Of particular interest for this proposal are the effects of fetal ETOH 

exposure on the hippocampus.  While gross structural abnormalities are not 

apparent in MRIs of those with FASD, animal and behavioral data suggest that 

there is damage at the cellular and molecular level. Behavioral data from humans 

and animals reveal deficits in learning and memory (Berman & Hannigan, 2000; 

Lewis et al., 2012); both of which are thought to be hippocampal dependent 

functions. Cellular studies examining the direct effects of ETOH on cellular 

survival in the developing hippocampus show that ETOH, or more specifically 

ETOH withdrawal, can cause damage to  cells in various regions of the 

hippocampus (Barron, Mulholland, Littleton, & Prendergast, 2008; Wilkins et al., 

2006).  This evidence of hippocampal damage offers further insight into the 

widespread the effects of fetal ETOH exposure on the CNS.  

Animal Models 

Animal models of FAS have been developed in attempt to understand the 

deficits observed in the clinical population following fetal ETOH.  These models 

allow for control over possible confounding variables and aspects of exposure 

including environment, dose of ETOH, and exposure timing, which is not possible 

in the human population.  The third trimester brain growth spurt observed in 

humans overlaps with the first postnatal week of rat CNS development (Dobbing 

& Sands, 1979).  To test the effects of ETOH during this time of CNS growth, 
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some rat models use a neonatal exposure paradigm, exposing rat pups to ETOH 

during the first postnatal week (Riley, Barron, Melcer, & Gonzalez, 1993; 

Wellmann, Lewis, & Barron, 2010) Exposure during this period produces deficits 

in a variety of behavioral paradigms that assess motor coordination (Idrus, 

McGough, Riley, & Thomas, 2011; Lewis, Wellmann, & Barron, 2007; J. D. 

Thomas, Idrus, Monk, & Dominguez, 2010), activity (Smith et al., 2012; J. D. 

Thomas, Biane, O'Bryan, O'Neill, & Dominguez, 2007), and learning and memory 

(Hunt, Jacobson, & Torok, 2009; J. D. Thomas, Abou, & Dominguez, 2009; J. D. 

Thomas et al., 2010; Tiwari, Arora, & Chopra, 2012).  The impairments observed 

in these paradigms overlap with those seen in the FASD clinical population.  

Data from these models have helped to elucidate the structural and behavioral 

effects associated with ETOH exposure during a critical period of CNS 

development.   

General Hypothesis 

            It is rare that developmental insults, such as fetal ETOH exposure, occur 

in the absence of other challenges.  For example, prenatal ETOH is often 

associated with exposure to smoking and poor nutrition. Hypoxic events, such as 

those that occur during the perinatal period, are potentially damaging to the 

developing fetus.  Interactions with other insults, such as perinatal hypoxia, can 

influence the severity of fetal ETOH related damages and may help explain some 

of the variability observed in the fetal alcohol population. 
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Hypoxia 

Background 

Hypoxia is a common occurrence during the perinatal period, particularly 

during parturition. Hypoxia refers to a depletion of oxygen levels and can be 

produced through asphyxia or ischemia and for the purposes of this paper; the 

term hypoxia will be used to refer to any decrease in oxygen flow to the CNS. 

The causes of perinatal hypoxia can include ruptured uterus, cord compressions, 

and contraction induced pressure on the infant (Fahey & King, 2005; Mistovich, 

Krost, & Limmer, 2006) 

The occurrence of recognized hypoxia at birth is approximately 5-25 per 

1000 live births with approximately 15% of these cases being moderate or severe 

(Low, 2004).  Perinatal hypoxia is commonly recognized as a cause of CNS 

damage and can result in long term neurological morbidity.  Severe hypoxic 

episodes can lead to major deficits including cerebral palsy, mental retardation, 

epilepsy, or fetal/neonatal mortality. In the near-term fetus or newborn, the CNS 

is well equipped to handle mild or moderate hypoxic challenges, so these 

challenges are generally considered benign (Shalak & Perlman, 2004).  

However, these events could result in a range of cognitive and behavioral deficits 

especially if the integrity of the CNS has already been compromised by other 

physiological challenges (e.g. infection or perhaps prenatal ETOH exposure) 

(Rees, Harding, & Walker, 2008). Identification of high risk infants and 

developments of therapeutic interventions that can reduce these damages of 

ongoing CNS injury are critical for improving the outcome of many children.  
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Changes in the Brain  

Much like ETOH, the degree of CNS damage following a hypoxic 

challenge depends on the timing, nature, and duration of the episode.  Neurons 

in the cerebellum, cortex and hippocampus are particularly sensitive to the 

damaging effects of acute hypoxic insults that occur early in fetal development 

(Rees et al., 2008) while hypoxia occurring later in development, in the near term 

infant, seems to preferentially affect neurons in the prefrontal cortex and striatum 

(Tolcos et al., 2003).  Chronic hypoxia during CNS development, which can be 

caused by placental insufficiency, leads to reduced brain weight, decreased 

myelination, impaired synaptogenesis, impaired dopaminergic activity, and 

enlargement of ventricles, among other deficiencies (Rees et. al., 2008).  Given 

the wide range of possible CNS damage, it is not surprising that a variety of 

behavioral and cognitive deficits are associated with hypoxia. 

Clinical Outcomes 

Children that have experienced severe hypoxic episodes, similar to those 

exposed to ETOH, can suffer significant cognitive, behavioral, and social delays.  

These children are less intelligent than their peers and perform significantly 

worse on neuropsychological tests (van Handel, Swaab, de Vries, & Jongmans, 

2007).  Children with moderate hypoxic damage have impaired attention and 

concentration, hyperactivity, executive function, and visual-spatial abilities (van 

Handel et. al., 2007). These findings indicate that even moderate hypoxia at birth 
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can cause significant developmental problems and, as with fetal alcohol 

exposure, treatment should be considered for any children at risk.   

Animal Models  

 Many animal models have been developed to explore the effects of 

hypoxia on the developing brain. These models vary in terms of the type (e.g. 

complete oxygen deprivation or decreased oxygen) and timing (e.g. at birth or 

several days following birth) of hypoxic exposure, mimicking different possibilities 

of the human condition. Similar to neonatal ETOH exposure in rodents, hypoxia 

exposure during critical periods of brain development causes hyperactivity 

(Decker et al., 2003; Juarez, Gratton, & Flores, 2008) and impairments in 

learning and memory (Boksa, Krishnamurthy, & Brooks, 1995; Ikeda et al., 2004; 

Karalis et al., 2011) overlapping what is often seen in the clinical population. 

Animal models such as these may be useful for assessing interactions between 

fetal ETOH and hypoxia, given the considerable similarities in cognitive and 

behavioral outcomes. 

Outcome Summary   

Fetal ETOH and perinatal hypoxia have significant overlap in some of the 

behavioral outcomes seen both in animal models and in the human population, 

such as impaired intelligence, learning and memory deficits, and problems with 

hyperactivity. The similarities in outcome may be partially related to the fact that 

these events can co-occur, both affect a variety of brain structures, and share 

some mechanisms of damage.    
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 Fetal Alcohol Exposure and Hypoxia 

     Alcohol use during pregnancy increases the likelihood of hypoxic events 

for the fetus with reports of increased labor complications and perinatal asphyxia. 

ETOH causes vasoconstriction of the placenta; an effect that is dose dependent 

and lasts as long as alcohol is in the system (Burd, Roberts, Olson, & Odendaal, 

2007).  It can also cause umbilical cord spasms and dysregulation of molecules 

that modulate blood flow; for review see (Bosco & Diaz, 2012; Burd et al., 2007) 

all of which can result in decreased oxygen delivery to the fetus.   

     ETOH also alters the brain’s ability to protect itself from hypoxic damage.   

In adult alcoholics, vascular damage increases the risk for hypoxic events such 

as stroke and ischemia. With this lowered level of oxygen, there is an increase 

cerebral blood flow in an attempt to maintain a steady rate of oxygen and prevent 

damage (Brown, Wade, & Marshall, 1985).  In sheep models of prenatal ETOH 

exposure, a normally developing fetus is able to increase blood flow to areas 

such as the cerebellum in response to decreases in oxygen levels (Gleason, Iida, 

Hotchkiss, Northington, & Traystman, 1997).  ETOH exposure attenuates this 

compensatory increase in blood flow to the brain (Mayock, Ness, Mondares, & 

Gleason, 2007), potentiating the damaging consequences of hypoxia.  

  While ETOH exerts some of its damage by increasing the likelihood of 

hypoxic events, both insults share mechanisms of damage at the 

cellular/molecular level and, when both occur together, there could be an 

exacerbation of injury.  
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Shared Mechanisms 

Both ETOH and hypoxia damage cells through many different 

mechanisms that are beyond the scope of this proposal. Of interest to this 

proposal are the shared mechanisms of damage, excitotoxicity and oxygen free 

radical formation/oxidative stress.  Excitotoxicity is cell damage or death that 

occurs when the cell is overstimulated, often resulting from overactiviation of the 

N-methyl-d-aspartate (NMDA) receptor.  Oxidative stress occurs when there are 

excess free radicals that can damage important cellular components.  Both 

ETOH, more specifically ETOH withdrawal, and hypoxia can induce excitotoxic 

and oxidative damage in the developing brain. 

NMDA receptors 

The NMDA receptor is a tetrameric ionotropic glutamate receptor found in 

the CNS; it facilitates excitatory synaptic transmission and is important in 

neuronal processes such as long term potentiation (Collingridge & Bliss, 1987).  

NMDA receptor channels are permeable to Ca2+, Na+, and K+, but are blocked 

at resting membrane potential by Mg+.  Depolarization removes this blockade 

and when glutamate binds to the receptor, Ca2+ flows into the cell.  There are 

also binding sites for Zn2+ and gylcine, a co-agonist, and polyamines (allosteric 

modulators; putrescine, spermine, and spermidine). These molecules can 

increase or decrease receptor response to glutamate, altering the amount of 

Ca2+ entering the cell; for review see (Rock & Macdonald, 1995). While normal 

receptor functioning is critical for synaptic plasticity and learning/ memory 
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formation, abnormal activity is implicated in a variety of neurological dysfunctions 

and disorders; for review see (R. J. Thomas, 1995).  

ETOH, NMDA receptors, Excitotoxicity 

Acutely, ETOH has a net inhibitory effect on the CNS.  This is achieved 

primarily via two broad mechanisms: enhanced inhibitory transmission and 

diminished excitatory transmission. ETOH interacts with GABA-A receptors to 

increase the effects of GABA, the main inhibitory neurotransmitter in the CNS. 

ETOH decreases excitatory transmission through antagonistic interactions with 

glutamate receptors, including NMDA receptors.  In the presence of chronic 

ETOH, the CNS goes through compensatory changes in an attempt to maintain 

homeostatic excitatory transmission. One of these changes is upregulation of the 

NMDA receptor which occurs through increases in the number of receptors 

(Hoffman, 1995; Hu & Ticku, 1995) changes in receptor subunit composition 

(Follesa & Ticku, 1995; Snell et al., 1996) which can make them more sensitive 

to glutamate/ overexcitation and increases in polyamine levels (Gibson et al., 

2003); for review see (Littleton et al., 2001).  More specifically, in in vivo models 

of fetal alcohol exposure, changes in the NMDA receptor are dependent on dose 

and timing (Nixon, Hughes, Amsel, & Leslie, 2002, 2004).  In the hippocampus, 

perinatal ETOH exposure produces increases in NR2A expression during ETOH 

withdrawal while no changes are seen with the NR2B subunit (Nixon et al., 

2004). 
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 While ETOH is still present, compensatory changes can be beneficial, but 

once ETOH is removed, they contribute to withdrawal symptoms and excitotoxic 

cell damage or death.  When the inhibitory effects of alcohol are removed (ETOH 

withdrawal) NMDA receptors are left hypersensitive to glutamate; this results in 

receptor over activation and excessive Ca2+ influx into the cell.  Excess Ca2+ in 

the cytoplasm triggers damaging signaling pathways and interferes with cell 

structure and function; this eventually leads to cell damage and death.  Damaged 

cells release glutamate into the extracellular space, further contributing to the 

excitotoxic process; for review see (Kumari & Ticku, 2000). 

Hypoxia, NMDA receptors, Excitotoxicity 

Oxygen deprivation causes cell damage through similar excitotoxic 

mechanisms. Hypoxia produces toxic increases in extracellular glutamate 

through impaired glutamate transporter function; for review see (Camacho & 

Massieu, 2006; Swanson, Farrell, & Simon, 1995), release of glutamate from the 

synapse, and glutamate leakage from damaged cells.  Under hypoxic conditions, 

there is a switch from normal aerobic respiration to anaerobic metabolism which 

causes rapid energy (ATP) depletion.  Without adequate ATP, glutamate 

transporters lose normal functioning and glutamate cannot be taken out of the 

synapse.  Excess Ca2+ in the cell and free radical inhibition of mitochondrial 

components promotes glutamate release into the synapse (Dong et al., 2012). 

Finally, as during ETOH withdrawal, damaged cells discharge their glutamate.   
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Anaerobic metabolism leads to a buildup of lactic acid, producing a state 

of acidosis, an increase in the acidity of tissue or fluid.  In low pH conditions, 

GABA transmission is impaired and certain ion channels become more 

responsive to glutamate activation (Zhao, Cai, Yang, He, & Shen, 2011), creating 

an imbalance that leaves cells sensitive to overstimulation.  Acidosis is thus 

another mechanism through which hypoxia produces excitotoxicity.   

ETOH, Hypoxia, and Polyamines 

Both ETOH and hypoxia enhance excitotoxic damage because they 

produce an accumulation of polyamines that potentiate the activity of NMDA 

receptors.  Free radicals produced from these insults induce the activity of 

ornithine decarboxylase (ODC), the rate limiting enzyme in polyamine synthesis.  

Polyamine metabolism produces free radicals that can further increase ODC 

activity (Saito, Packianathan, & Longo, 1997); promoting the production of more 

polyamines that further contribute to excitotoxicity.   

ETOH, Hypoxia, and Oxidative Stress 

Finally, both ETOH withdrawal and hypoxia can lead to increased 

production of free radicals.  ETOH metabolism produces free radicals.  Both 

insults lead to excess intracellular Ca2+ which indirectly increases free radical 

production; for review see (R. J. Thomas, 1995).  In a normally functioning cell, 

free radical levels are managed through scavenger molecules.  As a result of 

certain challenges, including ETOH exposure and hypoxia, the scavengers are 

saturated and excess free radical molecules are free to interact with important 
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lipids, proteins, and molecules in the cell, resulting is disrupted cellular 

functioning and cell death signaling (Halliwell, 1992).  

Hypothesis 

Given the overlap in mechanisms of damage, ETOH withdrawal could 

exacerbate hypoxic damage when both occur at sub-threshold levels, producing 

synergistic damage in sensitive areas including the hippocampus. The proposed 

studies will investigate the possibility of an interaction between these two 

challenges using an organotypic hippocampal slice culture model.    

Organotypic Hippocampal Slice Culture Models 

          The organotypic hippocampal slice culture model was developed in 1991 

by Stoppini and colleagues (Stoppini, Buchs, & Muller, 1991) and has since been 

used as an investigative tool for neuroprotection, neurogensis, and neurotoxicity.  

This model allows for the maintenance of neurons and glia and maintains some 

of the complex circuitry of an intact hippocampus.  These models can be used to 

measure cell death or damage or to analyze electrical potentials inside and 

outside of the cell.  Slices are sensitive to a variety of insults including ETOH and 

hypoxia; for review see (Noraberg et al., 2005).  

          Hippocampal slice cultures models are particularly interesting for studying 

excitotoxic damage; the hippocampus has a high density of NMDA receptors, a 

key factor in excitotoxic cell death.  The hippocampus is also implicated in some 

of the cognitive and behavioral deficits observed following fetal alcohol exposure 

or perinatal hypoxia, such as impaired learning and memory. 
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                                    Chapter 2: Methods 

Experiment 1:   

This study was designed to address whether mild levels of ETOH 

withdrawal and hypoxia exposure interacted to produce cellular damage in our 

hippocampal slice culture model.  The study first looked at the effects of varying 

levels of hypoxia in combination with ETOH withdrawal and then investigated 

possible developmental differences in sensitivity to these insults.     

Hippocampal Slice Culture Preparation 

           On postnatal (PND) 8 or PND 2 Sprague Dawley rat pups (3 male and 3 

female, belonging to the same litter) born in the University of Kentucky 

Psychology Department’s breeding facility were sacrificed for brain removal.   

Brains were directly transferred to a petri dish containing ice cold dissecting 

medium [Minimum Essential Medium (Gibco BRL, Gaithersburg, MD), 25 mM 

HEPES (ATCC, Manassas, VA), 200 mM L-glutamine (Invitrogen, Carlsbad, CA), 

50 μM streptomycin/penicillin (ATCC, Manassas, VA)].  For each animal, both 

hippocampi were dissected out and coronally sectioned into 200 μm slices using 

a McIllwain Tissue Chopper (Campden Instruments Ltd., Lafayette, ID).  Slices 

were selected using a dissecting microscope and then plated on teflon 

membrane inserts (Millicell-CM 0.4 μm; Millipore, Marlborough, MA, USA), with 3 

slices on each insert.  The inserts were maintained in 6 well culture plates 

containing 1mL culture media [dissecting media, 36 mM glucose, 25% Hanks’ 

balanced salt solution (HBSS; Gibco BRL, Gaithersburg, MD), 25% heat-

inactivated horse serum (HIHS; Sigma, St. Louis, MO)]  in each well.  Plates 



www.manaraa.com

25 
 

were maintained undisturbed in an incubator (37°C/5%CO2/95%air) for 5 days in 

vitro (DIV), to allow slices to adhere to the membrane before the first media 

change. There were 3-4 replications per treatment condition.  The care of 

animals was carried out in accordance with the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80-23, 

revised 1996), as well as the University of Kentucky’s Institutional Animal Care 

and Use Committee.  

ETOH and Hypoxia Treatments 

On DIV 5, inserts were transferred to 100 mM ETOH media or control 

media, with inserts from each subject being evenly distributed between the two 

treatment groups.  While this is a high dose of ETOH (similar to a blood alcohol 

content of .48), alcoholics/ binge drinkers can often reach extremely high blood 

alcohol levels (Paintner et al., 2012).  It is also important to note that rapid 

evaporation occurs over the course of ETOH exposure in vitro (Prendergast et 

al., 2004).  Plates were placed in propylene containers with 50 mL of control or 

100mM ETOH containing distilled water on the bottom. These containers were 

placed in plastic freezer bags to limit ETOH evaporation, filled with an air mixture 

and incubated until DIV 10 when inserts were transferred to fresh media, 

maintaining the same treatment groups.  On DIV 15, control and ETOH inserts 

were further divided into oxygen glucose deprivation (OGD) (a common method 

for inducing hypoxic conditions in vitro) or control groups, giving a total of 4 

treatment conditions; control/control, control/ETOH, OGD/control, and 

OGD/ETOH.  ETOH slices were removed from ETOH at this time, beginning the 
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process of EWD.  Inserts were then transferred to either glucose free culture 

media [D-glucose free modified eagle medium (Gibco BRL, Gaithersburg, MD) 

25 mM HEPES (ATCC, Manassas, VA), 200 mM L-glutamine (Invitrogen, 

Carlsbad, CA), 50 μM streptomycin/penicillin (ATCC, Manassas, VA)] (OGD) or 

regular culture media (control) and then placed in incubation chambers in which 

they were flushed with either  anaerobic gas (5% CO2, 95% N2) (OGD) or 

control air (5% CO2, 21% O2, 74% N2) at 25 L/min for 4 min. Based on previous 

data, this time period is sufficient to flush the chambers (Mulholland et al., 2005). 

Chambers were quickly sealed after the 4 min and placed in the incubator for the 

treatment duration (15, 30, or 60 min for PND 8; only 30 min for PND 2). 

Following the treatment, all inserts were placed in 1mL of culture media 

containing the fluorescent marker propidium iodide (PI; 3.74 μM, SigmaAldrich) 

(Exp 1) or plain culture media (Exp 2) and incubated for 24 hours.  

Fluorescence Imaging  

          PI binds to the DNA of damaged cells and when excited at 488nm light, 

emits a red fluorescent signal that can be captured using fluorescent microscopy.   

Slice images were captured using SPOT Advanced version 4.0.9 software (W. 

Nuhsbaum Inc., McHenry, IL, USA) connected to an inverted Leica DMIRB 

microscope (W. Nuhsbaum Inc.).  PI uptake in the CA1, CA3, and DG cell layers 

was measured using ImageJ version 1.46 software (National Institute of Health 

(NIH)).  Background signal was subtracted from the cell layer fluorescence and 

this value was used for statistical analysis.   
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          To supplement results found with fluorescent intensity in the 3 cell layers, 

the total area of PI fluorescence above a low intensity threshold of 30 was 

measured, using whole slice images converted to 8 bit images using Image J 

version 1.46 software (NIH).  This method of PI quantification was adapted from 

Loetscher et al. (2009) in which pixels above a predetermined intensity threshold 

of 75 were counted; 30 was used as the threshold in this experiment to include 

pixels that emit low levels of PI fluorescent signal.  One issue with measuring cell 

death by simply looking at average intensity of each region is that it is still unclear 

exactly what information the intensity is conveying in terms of cell damage.  With 

the imaging techniques used in this study, it is impossible to look at individual cell 

damage, instead this technique captures the fluorescent signal of the entire 200 

micron- thick slice. There is a spectrum of PI intensities in these images; there is 

not an all or none dichotomy.  While possible explanations exist, such as a more 

intense pixel represents a higher density of cells expressing PI fluorescence, our 

understanding remains limited, rendering it important to supplement fluorescence 

intensity measurements.   It is important to include low levels of PI intensity in the 

analysis of total area given that the difference between a pixel with high intensity 

versus a pixel with low intensity is unclear. This analysis was performed only for 

the culture preps exposed to 30 min OGD and ETOH.  

Experiment 2: 

          Experiment 2 used immunohistochemistry in the OHSC model to further 

examine the previously found interaction between hypoxia and ETOH withdrawal.  

The specific nature of cellular damage was investigated using neuronal nuclear 
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protein (NeuN) staining to assess the effects of these insults on neurons.  NeuN, 

now identified as Fox-3 (Kim, Adelstein, & Kawamoto, 2009), is expressed 

specifically in the nuclei of postmitotic neurons and is an accepted marker for 

both developing and mature neurons.    

Immunohistochemistry  

OHSC preparation and ETOH and OGD treatment followed the same 

methods described in Exp 1.  Three replicates were used for Exp 2.   

Tissue slices were fixed using 10% formalin (Buffered Formalde-Fresh 

Low Odor 10% Formalin, Fisher Scientific), 24 hours following 30 min OGD 

treatment.  Inserts were placed directly from the culture media into formalin 

plates with 1mL on top, 1mL on bottom and allowed to sit for 30 min.  Inserts 

were then washed twice with 1 X phosphate buffer solution (PBS) and 

refrigerated at 4°C in 1 X PBS for no more than 7 days.   

On day 1 of immunohistochemistry, inserts were exposed to 1 mL of buffer 

(200 mL non-sterile 1 X PBS; 200 µL Triton; 10 mg BSA) on the top and bottom 

for 45 minutes to allow for the breakdown of cell membranes.  Inserts were then 

transferred to plates containing 1 mL 1 X PBS. The primary antibody (NeuN) was 

diluted in (1:200) with the buffer; 1mL of this solution was placed on top of each 

insert and plates were refrigerated for 24 hours. On day 2, inserts were washed 

twice with 1 X PBS.  A 1:200 dilution of the secondary antibody (Fit-C), used to 

measure fluorescence, will be made and 1mL will be placed on the top of each 

insert for 24 hours.  On day 3, plates were washed twice with 1 X PBS and 

immediately imaged, using the same procedures as described for PI imaging. 
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As with PI, NeuN immunoreactivity was measured in the DG, CA3, and 

CA1 cell layers.  To supplement this data, total area of NeuN fluorescence above 

a threshold of 15 was measured, using the same methods described for Exp 1.   

Statistical Analysis   

          All statistical analyses were conducted using IBM Statistical Package for 

the Social Sciences (SPSS) Version 20 Software (IBM Corporation, 2011).  For 

each hippocampal region and for total area of fluorescence (for both PI and 

NeuN staining), an initial 2 x 2 x 2 (SEX x ETOH x OGD) analysis of variance 

(ANOVA) was conducted.  To assess differences in sensitivity as a function of 

age, the age of the pups that the cultures were derived from was included in an 

additional analysis as a factor in an analysis with the 30 min OGD time point (Exp 

1 only).  This time point was chosen because it had previously been shown to be 

sensitive to ETOH/OGD in the PND 8 tissue. Replicate was used as a covariate 

in the analyses this analysis to control for differences across litters/ culture 

preparations. If no main effects or interactions with sex were found, further 

analysis were conducted collapsed across this factor. Significant interactions 

were investigated using post hoc pair-wise comparisons with Tukey’s LSD 

correction for family-wise error. The data was converted to percent control for 

graphic presentation.  
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Chapter 3: Results 

Experiment 1 

Varying durations of OGD in Combination with ETOH withdrawal  

The first part of this experiment assessed the effects of varying durations 

of OGD using PND 8 rat pups.  Consistent with our hypothesis, 30 min OGD 

combined with ETOH withdrawal produced synergistic toxicity in the CA1 and 

CA3 regions as demonstrated by a significant ETOH x OGD interaction  in the 

CA1, F (1, 70) = 5.771, p < .05 and CA3, F (1, 70) =6.247, p < .05.  Post hoc 

comparisons for each region revealed that this interaction was driven by the 

ETOH/OGD condition which had greater PI fluorescence compared to all other 

groups (Figure 3.1).   There was also a main effect of ETOH, F (1, 70) = 12.652, 

p = .001 and a main effect of OGD, F (1, 70) = 24.060, p <.001 in the CA1; both 

ETOH and OGD increased fluorescence.  In the CA3, there was a main effect of 

OGD, F (1, 70) = 11.472, p = .001, with OGD exposed slices having greater 

fluorescence.  There were no significant effects in the DG. 
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Figure 3.1.  PI uptake expressed as percent control in the DG, CA3, and CA1 

regions of the PND 8 hippocampus, 24 hours following initiation of ETOH 

withdrawal and 30 min OGD treatment.  ETOH/OGD differed significantly from all 

other conditions in the CA3 (p < .05) and the CA1 (p < .01).   
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          This pattern was not observed with other durations of OGD treatment.  It 

was clear that 60 min OGD had a ceiling effect; that is – this level of OGD itself 

was toxic and previous ETOH exposure did not potentiate damage beyond that 

produced by the OGD.  There was a main effect of OGD in both the CA1, F (1, 

72) = 92.966, p < .001 and CA3, F (1, 72) =13.057, p = .001 and no effects of 

treatment in the DG (Figure 3.2). There were no significant treatment effects in 

any region with EWD after 15 min OGD (Figure 3.3). 
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Figure 3.2.  PI uptake expressed as percent control in the DG, CA3, and CA1 

regions of the PND 8 hippocampus, 24 hours following initiation of ETOH 

withdrawal and 60 min OGD treatment.  OGD treated slices differed significantly 

from non-OGD slices in the CA3 (p < .01) and CA1 (p < .001); this effect was not 

potentiated by ETOH.     
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Figure 3.3.  PI uptake expressed as percent control in the DG, CA3, and CA1 

regions of the PND 8 hippocampus, 24 hours following initiation of ETOH 

withdrawal and 15 min OGD treatment.  There were no significant treatment 

effects. 
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Developmental Differences    

In the CA1 region, there were clear developmental differences in the 

response to ETOH/OGD between the PND 2 and PND 8 hippocampal tissue.  In 

tissue derived from PND 8 pups, ETOH/OGD produced significantly greater 

damage than that from PND 2 pups; this was shown by the significant ETOH x 

OGD x AGE interaction, F (1, 270) = 4.002, p < .05.  The combination of ETOH 

and OGD produced greater toxicity compared to all other treatment groups for 

both ages, with this effect being more pronounced in PND 8 tissue (Figure 3.4).  
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Figure 3.4.  PI uptake expressed as percent control in the CA1 region for PND 8 

and PND 2 tissue, 24 hours following ETOH withdrawal and 30 min OGD 

treatment.  The interactive effect of ETOH and OGD is greater in PND 8 slices.   
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The developmental differences observed in the CA3 differed from those 

seen in the CA1.  There was a main effect of age, F (1, 270) = 18.314, p < .001, 

such that PND 2 tissue had greater fluorescence overall. There was an ETOH x 

OGD interaction, F (1, 270) = 4.028, p < .05, but this did not interact with age. A 

separate analysis for PND 2 slices showed that there was an ETOH x OGD 

interaction in these tissue, F (1, 200) = 4.460, p < .05, consistent with the 

interaction seen PND 8 tissue.  Again, the combination of ETOH and OGD 

produced greater damage relative to all other treatment groups.  Unlike tissue 

from PND 8 pups, OGD alone also produced damage above control levels for 

PND 2 slices in this region, p < .001 (Figure 3.5).   
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Figure 3.5.  PI uptake expressed as percent control in the CA3 region for PND 8 

and PND 2 tissue, 24 hours following ETOH withdrawal and 30 min OGD 

treatment.   ETOH/OGD produced toxicity above all other treatment groups in 

both PND 8 and PND 2 tissue while PND 2 tissue had greater fluorescence 

overall compared to PND 8. OGD alone was sufficient to increase toxicity above 

control levels in PND 2 tissue.   
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Similar to the effect seen in the CA3, there was a main effect of age in the 

DG, F (1, 270) = 4.644, p < .05, with PND 2 slices having greater PI 

fluorescence. Analysis of PND 2 slices showed an ETOH x SEX interaction, F (1, 

200) = 4.358, p < .05. Female slices had less PI fluorescence when exposed to 

ETOH compared to non-ETOH slices, while in males, greater fluorescence was 

observed in ETOH treated slices.  

Area Analysis 

          Consistent with analysis of PI fluorescent intensity in the 3 regions, 

analysis of total area of PI fluorescence revealed that there was an interaction of 

ETOH and OGD in PND 8, F (1, 212) = 12.444, p = .001 (Figure 3.6).  In this 

tissue, the combination of ETOH and OGD resulted in increased area of PI 

signal.  In PND 8 tissue there was also a main effect of ETOH, F (1, 212) = 

22.370, p < .001 and a main effect of OGD, F (1, 212) = 48.643, p < .001; each 

insult increased total area of PI signal. In PND 2 tissue there was a main effect of 

ETOH, F (1, 200) = 9.233, p < .05, main effect of OGD, F (1, 200) = 9.323, p< 

.05, with each insult increasing the total area of PI fluorescence.  There was also 

main effect of SEX, F (1, 200) = 9.438, p < .05 in PND 2 tissue such that female 

slices showed less total area of fluorescence compared to males.  The ETOH x 

OGD was not significant at PND 2, but the ETOH x OGD x SEX interaction 

approached significance, F (1, 200) = 3.413, p = .066 (Figure 3.7). 
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Figure 3.6.  Total area of PI fluorescence in PND 8 tissue expressed as percent 

control, 24 hours following ETOH withdrawal and 30 min OGD treatment.  

ETOH/OGD produced an increase in total area of PI signal above all other 

treatment groups.  OGD alone also produced an increase in area of PI signal. 
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Figure 3.7.  Total area of PI fluorescence in PND 2 tissue expressed as percent 

control, 24 hours following ETOH withdrawal and 30 min OGD treatment.  

ETOH/OGD produced an increase in total area of PI signal above all other 

treatment groups although there was not a significant interaction.   
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Experiment 2 NeuN immunoreactivity  

          Exposure to ETOH resulted in reduced NeuN immunoreactivity in the CA1, 

F (1, 233) = 17.492, p < .001, CA3, F (1, 233) = 5.255, p<.05, and DG, F (1, 233) 

= 13.099, p < .001, regardless of OGD exposure.  Unlike the results observed 

with PI, there was no interaction of ETOH with OGD and there was no effect of 

OGD in any regions (Figure 3.8).  

A main effect of sex was observed in both the CA1, F (1, 233) = 4.626,  p 

< .05 and CA3, F (1, 233) = 11.985, p = .001, such that tissue derived from 

females pups showed less NeuN fluorescence compared to that from males.    
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Figure 3.8.  NeuN fluorescence expressed as percent control in the DG, CA3, 

and CA1 regions of the PND 8 hippocampus, 24 hours following initiation of 

ETOH withdrawal and 30 min OGD treatment.  ETOH treatment resulted in a 

decrease in NeuN signal in the DG and CA, regardless of OGD treatment while 

the combination of ETOH and OGD decreased NeuN signal in the CA3.   
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Area Analysis 

Analysis of total area of NeuN fluorescence supported data found in the 

regional analysis.  There was a significant effect of ETOH, F (1, 233) = 25.527, 

p<.001, with ETOH slices showing less total area of immunoreactivity compared 

to non-ETOH treated slices (Figure 3.9).  There was also a main effect of SEX, F 

(1,233) = 8.274, p <.05; female tissue had less area of NeuN signal compared to 

males.   
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Figure 3.9.  Total area of NeuN fluorescence in PND 8 tissue expressed as 

percent control, 24 hours following ETOH withdrawal and 30 min OGD treatment.  

ETOH treatment produced a decrease in total area of NeuN signal compared to 

non-ETOH treated tissue.   
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                                               Chapter 4: Discussion 

Experiment 1 

The results from this experiment indicated that mild levels of ETOH 

withdrawal and hypoxia interacted to produce synergistic damage in the 

developing hippocampus. This effect was observed in both PND 8 and PND 2 

tissue, although the CA1 and CA3 regions of the hippocampus appeared to be 

differentially affected. In PND 8 tissue, the CA1 was more sensitive to the 

combination of ETOH withdrawal and OGD while in PND 2 tissue, the CA3 

showed greater damage. In younger slices, OGD alone was sufficient to produce 

damage above control levels in the CA3; this was surprising considering that 

younger brains are generally thought to be more resilient to hypoxic damage; for 

review see (S. J. Vannucci & Hagberg, 2004) although overall, more damage 

was observed in older slices.  This interaction could involve several different 

mechanisms and presents possible clinical implications.  

Mechanisms Experiment 1 

As mentioned in the introduction, there are multiple, overlapping 

mechanisms involved in the detrimental effects of ETOH and of hypoxia that 

could result in multiplicative damage when the two challenges are combined.  

The present study examined cell damage 24 hours following hypoxic insult and 

the initiation of ETOH withdrawal; glutamate induced excitotoxicity and the 

production of free radicals following both ETOH (Mayer et al., 2002; Vallett et al., 

1997) and hypoxia [(Ahlgren, Henjum, Ottersen, & Runden-Pran, 2011); for 

review see (Johnston, 2001)] occur during this 24 hour time period.  While the 
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mechanism was not investigated, the timing and region specificity of PI uptake 

suggest the possible role of excitotoxicity.    

Excitotoxicity/ Ionotropic Glutamate Receptors 

Both ETOH withdrawal; for review see (Lovinger, 1993) and OGD; for 

review see (Johnston, 2001) produce cell damage through excitotoxic pathways.  

The NMDA receptor is an important mediator of excitotoxic cell damage (R. J. 

Thomas, 1995; Waxman & Lynch, 2005) and antagonism of this receptor 

following ETOH withdrawal (Lewis et al., 2012; Mayer et al., 2002; Stepanyan et 

al., 2008) and hypoxia (Albers, Goldberg, & Choi, 1989a) separately, can be 

neuroprotective. It is well established that the CA1 region of the hippocampus is 

particularly susceptible to excitotoxic challenges compared to the other regions 

(Butler et al., 2010; Davolio & Greenamyre, 1995; Vornov, Park, & Thomas, 

1998), consistent with the results in PND 8 tissue from this study.  Several 

variations in NMDA receptor expression influence the sensitivity of the CA1.  In 

the CA1 of hippocampi derived from PND 8 rats, there is a higher density of 

NMDA receptors and higher expression of NR2B subunits compared to the CA3 

and dentate (Butler et al., 2010). Receptor channels containing NR2B have a 

more selective Ca2+ permeability, have a higher affinity for glutamate and glycine, 

and have longer open times all of which are beneficial under normal 

developmental conditions, but may increase a cell’s sensitivity to excitotoxic 

challenges (Nagy, Kolok, Dezso, Boros, & Szombathelyi, 2003).  NR1 subunits 

containing a splice variant associated with a lack of spermine potentiation 

(Durand, Bennett, & Zukin, 1993) have higher expression in the CA3 and dentate 
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compared to the CA1, while a different splice variant, which is associated with 

increased sensitivity to NMDA and ischemic insult, has greater expression in the 

CA1 (Coultrap, Nixon, Alvestad, Valenzuela, & Browning, 2005). Given these 

differences in subunit expression, it is not surprising that the CA1 showed the 

greatest damage following ETOH exposure and OGD.   

Although the pharmacology of receptors containing the NR2B subunit 

makes them sensitive to overexcitation transition to NR2A expression during 

hippocampal development is temporally linked to increased excitotoxic sensitivity 

(Brewer et al., 2007).  The NR2A subunit has a greater current peak compared to 

NR2B receptors (Cheng, Fass, & Reynolds, 1999) and it is present during 

synapse formation and may be involved in a positive feedback loop that 

potentiates glutamate release (Norris et al., 2006). The transition from 

predominate NR2B expression to NR2A expression begins on PND 7 in the 

neonatal rat (Wenzel, Fritschy, Mohler, & Benke, 1997) and may contribute to the 

overall greater damage following ETOH and OGD in slices taken from PND 8 

pups 

The results in PND 2 tissue indicating that the CA3 experienced greater 

damage in response to ETOH/OGD compared to the CA1 were unexpected, 

although, several possible explanations exist. Kainate and AMPA receptor 

subunit expression varies across development and hippocampal region.  In the 

CA3 of younger rat brains (PND 4), there is a greater relative presence of Ca2+ 

permeable subunits compared to the CA1; this is in contrast to the PND 7 brain 

in which expression in the CA1 and CA3 is the same (Pellegrini-Giampietro, 
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Bennett, & Zukin, 1992). If the younger brain has more Ca2+ permeable receptors 

in the CA3 vs CA1, the CA3 could be more susceptible to excitotoxic insults such 

as ETOH withdrawal and OGD.  Another contributing factor, in OHSC models, 

may be that the younger hippocampus has fewer functional synaptic connections 

between the CA3 and CA1 (Muller, Buchs, & Stoppini, 1993).  During ETOH 

withdrawal, CA1 toxicity can be reduced by interrupting the projections coming 

from the CA3 (Prendergast et al., 2004). With a relative lack of stimulation from 

the CA3, the CA1 in younger tissue has less excitatory input to potentiate 

excitotoxic damage and thus may show less damage compared to older 

hippocampal slices. 

Oxidative Stress 

Oxidative stress is closely connected to excitotoxicty/ excessive activation 

of iontropic glutamate receptors [for review see (Michaelis, 1998)], plays a role in 

the cascade of excitotoxic damage (Johnston, 2001), and is another potential 

mechanism through which ETOH/ETOH withdrawal and hypoxia could interact.  

As stated previously, free radicals (key factors in oxidative damage) are formed 

during both ETOH exposure/withdrawal (Vallett et al., 1997) and hypoxia (Gill & 

Perez-Polo, 2008; Noraberg et al., 2005).  In the neonate, during ETOH 

exposure, there are excess levels of free radicals as a result of ETOH 

metabolism and of ETOH’s interference with antioxidant defenses; for review see 

(Goodlett & Horn, 2001) and in adult models, oxidative stress during ETOH 

exposure is implicated in neurodegeneration (Crews & Nixon, 2009). High 

concentrations of intracellular Ca2+, such as that occurring during ETOH 
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withdrawal and hypoxia, promotes free radical production through a number of 

pathways including enzyme activation and disruption of mitochondrial 

functioning; for review see (Gill & Perez-Polo, 2008).  The developing brain is 

particularly susceptible to oxidative damage and free radical oxidation of lipids, 

proteins, DNA, and other cellular components can result in lasting cytostructural 

changes (Halliwell, 1992).  

In hippocampal slices, oxidative insults produce damage in the CA1 and 

CA3; for review see (Noraberg et al., 2005). There is evidence that the CA1 is 

particularly sensitive to oxidative damage (Vornov et al., 1998; Won et al., 1999) 

which is consistent with results from PND 8 slices in this study.  Depending on 

the severity of the insult, cellular injury in the hippocampus can occur within 24 

hours or over the course of several days (Vornov et al., 1998) and this injury 

occurs in both neurons and glia (Won et al., 1999). It  has been suggested that 

free radicals play a role in both immediate and delayed neuronal damage 

following hypoxia (Won et al., 2001) which could factor into the differences 

between finding in Exp 1 and Exp 2, which is further  discussed below.    

Experiment 2 

Data from Exp 2, looking specifically at neuronal damage, offered a 

different perspective on the effects of ETOH and OGD on the developing 

hippocampus.  Unlike findings with PI, NeuN staining revealed only a main 

detrimental effect of ETOH exposure, regardless of OGD treatment. Several 

factors could be contributing the differences in the results with PI and those with 
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NeuN, including the timing of fluorescent measurement and cell types being 

assessed.  Discrepancies in the results highlight the importance of understanding 

the timeline of cell damage and using multiple markers/ understanding the 

subtleties that underlie each stain.   

The results of this study are consistent with a previous OHSC study, using 

100 mM ETOH exposure over 10 days, indicating a decrease in NeuN 

immunoreactivity in the CA1 24 hours following initiation of ETOH withdrawal 

(Wilkins et al., 2006). The lack of an OGD effect or interaction between ETOH 

and OGD as measured by NeuN fluorescence is likely due to the fact that 

assessment was made 24 hours following the insults.  Previous hippocampal 

slice culture studies show  neuronal damage that is measureable over the course 

of two to four days following initial hypoxic/ ischemic insult (Xu et al., 2002); for 

review see (Cimarosti & Henley, 2008).  It is important to note that reduced 

immunoreactivity in the DG, CA3, and CA1 following ETOH withdrawal occurs at 

3 days post-insult (Wilkins et al., 2006), thus,  in order to capture an effect of 

OGD and a possible interaction with ETOH, future experiments should examine 

NeuN fluorescence at additional time points, including 72 hours following ETOH 

withdrawal and OGD.    

Mechanisms Experiment 2 

Delayed neuronal damage, particularly in sensitive brain areas such as 

the hippocampus, is one of the hallmarks of hypoxia/ischemia (Nitatori et al., 

1995; Pulsinelli, Brierley, & Plum, 1982). In hippocampal slices, as time following 
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OGD insult increases, blockage of NMDA receptors with the antagonist MK-801 

becomes increasingly less protective (Ahlgren et al., 2011). This suggests that 

there is early excitotoxic injury as a result of NMDA receptor activation, followed 

by damage mediated through other mechanisms.  Briefly, cell death following an 

acute hypoxic challenge begins with energy depletion and neuronal release of 

glutamate coupled with impaired glutamate uptake by glia, resulting in initial 

excitotoxicity.  Delayed neuronal damage begins 8 – 48 hours after the 

challenge, and involves an accumulation of mitochondrial injury and release of 

pro-apoptotic molecules that signal for cell death; for review see (Rees, Harding, 

& Walker, 2011); differences in results from Exp 1 and Exp 2 could be explained 

in part by the mechanism of the damage and the time point that these measures 

were assessed.   

While delayed neuronal damage following OGD may explain why an 

interaction was not found 24 hours following OGD with NeuN, it does not account 

for the interactive damage observed with PI. PI is a nonspecific marker of cell 

damage that is incorporated into the DNA of any cell type with a compromised 

membrane and the interaction found in this study likely involves not only neurons 

but glia as well. White matter damage is classically associated with 

hypoxia/ischemia in infants and there is evidence that glial cells, specifically the 

oligiodendrocytes that make up myelin, experience rapid cell death after hypoxic 

insult; for review see (Matute et al., 2001; Rees et al., 2011). Unlike neurons, 

these cells express AMPA and kainite but not NMDA receptors and their subunit 

composition make them especially sensitive to excessive glutamate activation 
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(Tekkok, Ye, & Ransom, 2007); for review see (Matute et al., 2001). There is also 

evidence that astroglia are damaged prior to neurons following hypoxia and that 

they experience early functional changes that contribute to delayed neuronal 

damage (Ouyang, Voloboueva, Xu, & Giffard, 2007). In PND 8 hippocampal 

cultures, ETOH withdrawal produces a loss in astroglia after 24 hours, 

specifically in the CA1 and DG (Wilkins et al., 2006). These effects of ETOH 

withdrawal and OGD on glia suggest that the interaction found with PI in the 

present study is likely a result of the combination of neuronal and glial damage 

and future research should include a glial marker. 

General Discussion 

          The purpose of this study was to determine if subthreshold levels of ETOH 

exposure and hypoxia (OGD) interact to produce increases in cellular damage.  

Experiment 1 is the first study to demonstrate that there is an interaction between 

ETOH and hypoxia exposures that by themselves, do not produce damage as 

measured by PI uptake in the developing hippocampus. Such an interaction may 

explain why there is large variability in outcome following fetal alcohol exposure 

in the clinical population. For example, a child exposed to only subthreshold 

levels of alcohol during development may not experience overt deficits.  

However, a child exposed to the same levels of alcohol during development that 

is then subjected to a hypoxic challenge could experience CNS damage that 

results in cognitive and behavioral impairments.  
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According to Abel & Hannigan (1995), various environmental and 

biological factors that accompany alcohol exposure may explain why the FAS 

phenotype exists in only a portion of exposed offspring.  Maternal pattern of 

consumption, smoking, culture/ socioeconomic status, and genetics all have an 

impact on the effects of alcohol (Abel & Hannigan, 1995; Abel & Sokol, 1986). 

Much of the cellular/molecular damage and subsequent impairments following 

fetal alcohol exposure could be the result of the co-occurrence of alcohol 

exposure and hypoxia (Abel & Hannigan, 1995).  In other words, hypoxia could 

be a contributing factor to the severity of FASDs.  Future in vivo examination of 

the interaction between ETOH withdrawal and hypoxia will provide valuable 

information on the possible deficits caused by the combination of these insults. 

Future Models  

OHSCs have been used extensively as a model of hypoxia/ischemia and 

as models for fetal alcohol exposure, with results that are similar to those seen in 

vivo; for review see (Noraberg et al., 2005).  Given this overlap, it is reasonable 

to assume that the interaction observed in this study may also be present in an in 

vivo model of fetal ETOH exposure and hypoxia.  Studies on the effects of both 

fetal ETOH and on hypoxia/ischemia have utilized neonatal rat models.  In 

rodents, the first week of neonatal CNS development is thought to overlap with 

the 3rd trimester human brain growth spurt (Dobbing & Sands, 1979), a time 

when the CNS is especially sensitive to toxic insults.  ETOH exposure during this 

period can lead to impairments similar to those seen in children exposed to 

alcohol during gestation (Lewis et al., 2007; Lewis et al., 2012; Rubin et al., 2009; 



www.manaraa.com

55 
 

Wellmann et al., 2010).  Similarly, hypoxic/ischemic challenges during this first 

week of neonatal development produces deficits that mirror those in the clinical 

population (Balduini, De Angelis, Mazzoni, & Cimino, 2000; Cai et al., 2009; Fan 

et al., 2005; Ikeda et al., 2002; Tang & Nakazawa, 2005). 

Clinically, the risk of hypoxic episodes increases during parturition (R. C. 

Vannucci, 1990).  In a fetus that has been exposed to alcohol, this is also the 

time when withdrawal is likely to begin.  In the current study, hypoxic exposure 

occurred at the initiation of ETOH withdrawal, mimicking events that could occur 

in the human population and indicating that this is a potentially critical period of 

CNS injury.  An in vivo model of 3rd trimester ETOH exposure with an acute 

hypoxic challenge during ETOH withdrawal could potentially capture the 

interaction.  Targeting cell damage during withdrawal has previously been shown 

to protect against a variety behavioral deficits following neonatal ETOH exposure 

(Lewis et al., 2012; Rubin et al., 2009) and, in the same respect, certain 

therapies, when administered shortly following hypoxic/ischemia, reduce 

subsequent impairments (Cai et al., 2009) and brain damage (Hattori, Morin, 

Schwartz, Fujikawa, & Wasterlain, 1989).  Agents that offer neuroprotection 

against the combination of ETOH/OGD in hippocampal slices could easily be 

assessed in an in vivo model.   

Potential Targets/Mechanisms 

          Preventing cellular damage that occurs during ETOH withdrawal and 

following hypoxia could protect against subsequent cognitive and behavioral 
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deficits.  Pharmacological agents that modulate NMDA receptor activity may be 

especially efficacious, given the potential role these receptors have in the 

interactive damage observed in this study.  Compounds that have inhibitory 

effects on NMDA receptors reduce deficits following fetal alcohol exposure 

(Lewis et al., 2012).  There is mixed data regarding efficacy of NMDA receptor 

antagonism following hypoxia/ischemia; [for review see (Albers, Goldberg, & 

Choi, 1989b; Mcculloch, 1992)] which may be due, in part, to the important role 

of glial cell types which express other ionotropic glutamate receptors (McDonald, 

Althomsons, Hyrc, Choi, & Goldberg, 1998; Tekkok & Goldberg, 2001; Tekkok et 

al., 2007).  Reducing excitotoxicity following the combination of ETOH withdrawal 

and hypoxia may thus require modulation of more than one receptor type.   

Limitations 

          As with any experiment, this study has several limitations that could 

influence interpretation of results.  First, fluorescent measurement is only 

semiquantative method of cell damage (PI) or neuronal viability (NeuN) analysis.  

To supplement fluorescent intensity data,  area analysis was performed. 

Measurements of the area of PI fluorescence for each slice above a relatively low 

threshold (Loetscher et al., 2009) show that the combination of ETOH and OGD 

produces a marked increase total area of the slice expressing PI above a 

baseline level of intensity in both PND 8 and PND 2 tissue, providing further 

support for the hypothesis. Similar analysis done for Exp 2, showed that total 

area of NeuN fluorescence was reduced by ETOH treatment, coinciding with 

reduced fluorescent intensity in ETOH exposed slices.  
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The results from Exp 2 present an important implication and possible 

limitation to the current study; the severity of the 100 mM dose of ETOH is 

dependent on the marker being used.  ETOH reduced NeuN immunoreactivity 

below control levels, indicating significant damage as a result of ETOH exposure 

alone.  This suggests that 100mM may not be a mild/ subthreshold dose of 

ETOH and that using a lower concentration of ETOH and multiple markers 

should be considered for future studies.   

Finally, it is important to note that the combination of subthreshold ETOH 

and OGD producing increases in PI uptake could simply be an additive effect and 

not a synergistic effect.  Synergy is difficult to prove and has underlying 

implications as to the mechanisms through which the interaction is occurring [for 

brief review see (Greco, Faessel, & Levasseur, 1996)]. Even if the effect is purely 

additive, it is very clinically relevant as it can help explain variation seen in 

children exposed to alcohol during fetal development.           

Conclusions 

In summary, the present study demonstrated an interactive effect of ETOH 

withdrawal and hypoxia in the developing hippocampus.  This likely involves 

multiple cell types as well as various mechanisms of damage, as indicated by 

discrepancies between the two stains used.  An interaction of this nature could 

explain some of the variation in outcome seen in children following fetal alcohol 

exposure and specifically targeting the mechanisms that underlie these insults 

could offer protection for children at risk.      
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